[Paper Review]
Training Compute-Optimal Large Language Models

Paul Jason Mello
Department of Computer Science and Engineering
University of Nevada, Reno
pmello@unr.edu

Abstract

”We investigate the optimal model size and number of tokens for training a trans-
former language model under a given compute budget. We find that current large
language models are significantly under-trained, a consequence of the recent focus
on scaling language models whilst keeping the amount of training data constant.
By training over 400 language models ranging from 70 million to over 16 billion
parameters on 5 to 500 billion tokens, we find that for compute-optimal training,
the model size and the number of training tokens should be scaled equally: for ev-
ery doubling of model size the number of training tokens should also be doubled.
We test this hypothesis by training a predicted compute-optimal model, Chin-
chilla, that uses the same compute budget as Gopher but with 70B parameters and
4x more more data. Chinchilla uniformly and significantly outperforms Gopher
(280B), GPT-3 (175B), Jurassic-1 (178B), and Megatron-Turing NLG (530B) on
a large range of downstream evaluation tasks. This also means that Chinchilla
uses substantially less compute for fine-tuning and inference, greatly facilitating
downstream usage. As a highlight, Chinchilla reaches a state-of-the-art average
accuracy of 67.5% on the MMLU benchmark, greater than a 7% improvement
over Gopher.” [2]]

1 Summary

This pivotal paper, released in 2022, redefined the training landscape of Large Language Models
(LLMs). They pose the question ”Given a fixed FLOPs budget, how should one trade-off model size
and the number of training tokens?”[2] Through their experimentation, they demonstrate optimally
trained models, like Chinchilla 70B will significantly outperform larger models like Gopher 280B
with a fixed FLOPs budget by training on the optimal number of tokens. They go on to derive a
training formula for the optimal-compute-data-parameter for any given training run.

2 Introduction

In 2022, frontier labs and companies had been in a race to train ever larger LLMs. This race was
brought on by an important paper which proposed Neural Scaling Laws [3]], which was itself built
on prior works and observations detailing the same sparks. These papers essentially proposed ever
larger models with ever larger datasets. Despite this, flaws and misunderstandings with the original
studies produced inefficient models. With these growing models, single training runs have exploded
in costs into the 10 — 100s of millions for a single model. It is then crucial to ensure the model
and training process is as efficient as possible. To determine this, the authors of this paper consider
three main components which contribute to training efficiency, compute budget, data quantity, and
parameter count.

3 Background and Motivation

Training ever larger models requires significant energy costs which increase with model size. Since
training runs for LLMs can only be done once, it is important to ensure a near optimal training run.
Prior works like Kaplan et. al [3]] have shown a power law relationship between parameter count
and performance where every 10x increase in computational budget should be met with a 5.5x
increase in model size, and a training token increase of 1.8 x. In this paper, the authors argue that
modern LLMs have been severely starved of training data resulting in a hindrance of performance.
Instead, increasing model size and training tokens in equal proportions leads to Chinchilla like mod-
els. Where Chinchilla, a 70B parameter model, significantly outperforms Gopher, a 280B parameter
model, by a wide margin on a wide range of tasks including Measuring Massive Multitask Language
Understanding (MMLU) []].

3.1 Key Concepts

* Concept 1: “Given a fixed FLOPs budget, how should one trade-off model size and the
number of training tokens?”[2].

» Concept 2: To model concept one, they define the final pre-training loss L(N, D) as a
function of model parameters N, number of training tokens D, and seek to find the optimal
computational training budget C such that FLOPs(N, D) = C where:

Noptima ;Do ima = i LN,D 1
pimal (), Dopima (C) = arg N,Dsu. Flfggsl(N,D):C () M

* Concept 3: They define parametric loss curves under the constraints defined in Kaplan et
al.[3], FLOPs(N, D) = 6N D. This allows them to define the following power law form

for optimality:
c* c\’
Nop(C) = G (6) , Dop(C) =G™! (6> , where: 2)
1
A\ o+F 8 Q@
G=|— , = , and b= . 3
(ﬂB) T ar B a+f ©)
Here, a and b define a roughly 50% — 50% split on N and D as described in the following
section.

* Concept 4: Utilizing concept two, they illustrate that models can be trained optimally to
reduce loss under the constraints like compute budget, data quantity, or parameters resulting
in better model capabilities. In other words, training optimally dense models on optimal
tokens leads to optimal models.

4 Methodology

To test their hypothesis, they devise an empirical analysis of 400 language models consisting of
70M to 16B parameters and train them on 5B - 500B tokens. They utilize their pre-training loss
hypothesis to predict optimal bounds and calculate the necessary number of tokens to optimally
train a model.

4.1 Overview of the Proposed Approach

* Issue 1: Given the exceptionally large and long training runs of larger models, they test
their hypothesis on various models at a significantly smaller scale and extrapolate their
findings to larger models.

* Issue 2: Prior work from Kaplan et al.[3], described scaling laws for the optimal scaling of
N and D to be a roughly 75% — 25% split respectively. However, in this paper, the authors
derive a mathematically optimal scaling law for N and D to be a roughly 50% — 50% split.

* Issue 3: Two key assumptions are made and one important assumption ignored. The first is
that their test models, despite significantly lower parameter counts, follow the same scaling
curve. The second assumption assumes that this methodology can be inherently compar-
ative, as it measures its performance alongside other models. The final and unmentioned

assumption is that all data is inherently equal in quality, and that is fundamentally not the
case. As a result, token counts will likely vary depending on quality.

S Experiments and Results

They conduct their experiments across a wide range of models with varying parameter counts and
training tokens. They provide what is essentially a look up table / equation defining the estimated
optimal training parameters to produce the most performant models.

Parameters FLOPs FLOPs (in Gopher unit) Tokens
400 Million 1.92e+19 1/29,968 8.0 Billion
1 Billion 1.21e+20 1/4,761 20.2 Billion

10 Billion 1.23e+22 1/46 205.1 Billion
67 Billion 5.76e+23 1 1.5 Trillion
175 Billion 3.85e+24 6.7 3.7 Trillion
280 Billion 9.90e+24 17.2 5.9 Trillion
520 Billion 3.43e+25 59.5 11.0 Trillion
1 Trillion 1.27e+26 221.3 21.2 Trillion
10 Trillion 1.30e+28 22515.9 216.2 Trillion

Figure 1: Estimated optimal training parameters for a given compute budget.

Where as LLMs had previously been trained with the following:

Model Size (# Parameters) Training Tokens
LaMDA (Thoppilan et al., 2022) 137 Billion 168 Billion
GPT-3 (Brown et al., 2020) 175 Billion 300 Billion
Jurassic (Lieber et al., 2021) 178 Billion 300 Billion
Gopher (Rae et al., 2021) 280 Billion 300 Billion
MT-NLG 530B (Smith et al., 2022) 530 Billion 270 Billion
Chinchilla 70 Billion 1.4 Trillion

Figure 2: 5 of the largest dense transformer language models with their parameter counts and training
tokens. Chinchilla illustrates a common misconception in the necessary quantity of training data that
has been pervasive in prior models.

5.1 Evaluation Metrics

* Evaluation Task 1: They evaluate Chinchilla across a wide range of tasks comprised
of Language Modelling, MMLU, BIG-bench, Common Sense, Question Answering, and
Reading Comprehension.

* Metric 1: They compare Chinchilla against a range of LLMs and show Chinchilla directly
outperforms Gopher metrics like perplexity, bits-per-byte, and inference speed/cost.

5.2 Key Results

* Result 1: Prior training models were starved of necessary tokens to generate highly perfor-
mant models. Larger models consisting of 175B parameters were trained on 300B tokens
when they should have been trained on 3.7 trillion with a compute budget of roughly 1¢%*
FLOPs

* Result 2: Chinchilla, while 4 x smaller than Gopher, and other large models became SOTA
with an MMLU benchmark accuracy of 67.5% and outperformed on Gopher by 7%. A
focus is made on MMLU because training data leakage is an important component.

6 Discussion and Critique

Overall, this paper defines a pivotal moment of training LLMs. It illustrates common misconceptions
that frontier labs and companies failed to identify the starvation of modern models with insufficient
token counts. They propose a novel algorithm to identify the necessary tokens and training param-
eters given a fixed compute budget and explore their algorithm by aggregating and training smaller
models. They demonstrate that optimal models, such as Chinchilla, which was trained according
to their algorithm, have significant performance gains over larger models like MT-NLG 530B and
GPT-3 on common evaluation tasks like MMLU.

Despite this paper, or better yet because of this paper, models that are released today are significantly
decreasing across N, D, and C. Despite this, these models are better performing and significantly
more cost efficient which will become ever more important as they are integrated into a range of
mobile or resource limited devices beyond the extensive GPU warehouses they exist in now. As
of today, only a few labs and companies, such as Anthropic, OpenAl, Google, Meta, and maybe
Mixtral have the funding, compute, data, and know-how to train foundation models exceeding S0B
parameters.

6.1 Strengths

* Strength 1: Improvements over prior works like Kaplan et al.[3]]. Illustrating research gaps
understanding the proper training paradigms for LLMs exceeding 1M parameters.

* Strength 2: The applicability of this approach directly leads to better scalability, better
generalization, better models, and ultimately more efficient training/inference/and energy
costs.

» Strength 3: This paper introduced a significant shift in conceptions regarding the training
of ever larger LLMs and did so using smaller models with theoretical justifications for
larger scales. Efficient in both compute and theory.

6.2 Weaknesses

Notably, this paper was produced by Google’s DeepMind. There are no important weaknesses as
they address the scope of their work from the beginning and propose novel improvements to the
work proposed in Kaplan et al.[3]. However, as described earlier not all tokens are created equal.
This is a systemic issue with all datasets, however a cleaner dataset would likely provide marginal
improvements to the performance gained or required tokens during training. However, since most
models are trained on roughly the same data, token quality should not significantly effect the results
of their work.

7 Future Directions

* One direction would be to significantly clean the datasets and tokens used during training to
provide a more thorough understand of the role of N, D, and C, for the efficient computation
LLMs.

* Although significantly inefficient, double checking the results of this work on a wide range
of language models beyond 70B parameters would be important to ensure that the optimal
N, D, and C holds for models of larger sizes rather than relying on the proposed power
scaling laws. This would be a grossly inefficient evaluation across a range of dimensions
like memory, compute usage, carbon footprint, and more, but one can never be certain.

8 Conclusion

The authors introduces a compute-optimal training approach for LLMs, demonstrating that scaling
both model size and training tokens in equal proportions leads to better performance. They train
Chinchilla, a 70B parameter model, using 4 x more data than Gopher, a 280B parameter model, re-
sulting in superior performance on key benchmarks despite being 4 smaller. This work highlights
the efficiency gains of optimal model and data sizes, effectively reducing the training and down-
stream inference compute. As a result, they have promoted more sustainable and compute-efficient

model development. Today this has become a landmark paper for the training of extremely large
LLMs and has seen usage to optimally train models of significantly smaller sizes, in the millions of
parameters.

References

[1] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-
hardt. Measuring massive multitask language understanding, 2021.

[2] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hennigan, Eric Noland,
Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy, Simon Osindero, Karen Si-
monyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre. Training compute-optimal large
language models, 2022.

[3] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models, 2020.

	Summary
	Introduction
	Background and Motivation
	Key Concepts

	Methodology
	Overview of the Proposed Approach

	Experiments and Results
	Evaluation Metrics
	Key Results

	Discussion and Critique
	Strengths
	Weaknesses

	Future Directions
	Conclusion

